Billings Urban Indian Health Program

Community Health Profile & Individual Site Report
Acknowledgments

Funding for this report was primarily provided by the Indian Health Service Division of Epidemiology and Disease Prevention. The report contents are solely the responsibility of the authors and do not necessarily represent the official views of the Indian Health Service.

Urban Indian Health Institute would like to thank the staff at the urban Indian health and social service organizations nationwide for the excellent work they do daily on behalf of their communities.

This report was prepared by Crisandra Wilkie, MPH, and Kate Lewandowski, MPH, and designed by Ibrahim Osman, AA, under the direction of the Chief Data Officer, Adrian Dominguez, MS, with the support of Urban Indian Health Institute staff including Rachael Bokota, MPH, Kaeli Flannery, MPH, and Scott Erickson, MPH.

Terminology

The authors use the terms “Native”, “Indian”, “Indigenous” and “American Indian and Alaska Native” interchangeably throughout this report. The demographic terminology included in source material is referenced when appropriate.

Recommended Citation

Urban Indian Health Institute, Seattle Indian Health Board (2021). Billings Urban Indian Health Program: Community Health Profile & Individual Site Report. Seattle, WA: Urban Indian Health Institute.
CONTENTS

Executive Summary .. 1
Key Findings .. 2
Introduction ... 3
Who are urban Indians? .. 3
How to use this report ... 3
Methods and Data ... 5
Data Sources .. 5
Data Limitations .. 7
Analysis ... 8
Sociodemographics .. 10
Race .. 10
Age and Sex .. 12
Poverty .. 13
Supplemental Nutrition Assistance Program ... 14
Housing ... 15
Health Insurance Coverage .. 16
Disability Status ... 17
Education .. 18
Unemployment .. 19
Means of Transportation to Work .. 20
Maternal and Child Health ... 22
Births by Race/Ethnicity .. 22
Births by Maternal Age Group .. 23
Births by Marital Status ... 24
Maternal Education ... 25
Insurance Status .. 26
Women, Infants, and Children Status ... 27
Maternal Smoking ... 28
Gestational Diabetes .. 29
Prenatal Care .. 30
EXECUTIVE SUMMARY

Urban Indian Health Institute (UIHI) analyzed data from the American Community Survey (ACS), the National Vital Statistics System (NVSS), National Notifiable Disease Surveillance System (NNDSS), and Behavioral Risk Factor Surveillance System (BRFSS) to describe health outcomes among urban American Indians and Alaska Natives across more than 30 health indicators.

This Community Health Profile aggregates data on the sociodemographics, maternal and child health, infectious disease, and mortality of American Indians and Alaska Natives (AI/ANs) in the Billings UIH service area. The data in this report are five-year estimates from 2013 to 2017.

Key findings show that urban American Indians and Alaska Natives (AI/AN) frequently experience higher proportions of poverty and inequities in infant and maternal health, access to health insurance, disability rates, and deaths due to homicide and suicide when compared to their non-Hispanic White (NHW) counterparts. We acknowledge the role colonization has had on Indigenous communities and the health indicators listed in this report.

As this profile may show, there is still work to be done from local, state, and federal entities to collect quality, accurate data. Urban Indian Health Programs should work closely with their local and state health jurisdictions to access the most current data and, where possible, urge better tracking of demographics to inform care.
KEY FINDINGS

The AI/AN population was younger than the NHW population, with 49.5% of the AI/AN population under the age of 25 years, compared to 28.9% of the NHW population.

<table>
<thead>
<tr>
<th>Proportion of uninsured AI/AN children under the age of 19 in the Billings UIH service area was 4.3 times that of their NHW counterparts (29.8% vs 7.0%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The proportion of uninsured AI/AN children under the age of 19 in the Billings UIH service area was 4.3 times that of their NHW counterparts (29.8% vs 7.0%)</td>
</tr>
<tr>
<td>The proportion of uninsured AI/AN children under the age of 19 in the Billings UIH service area was 4.3 times that of their NHW counterparts (29.8% vs 7.0%)</td>
</tr>
<tr>
<td>In the Billings UIH service area AI/AN children had a lower percentage of disability than NHW children (2.7% vs 4.9%).</td>
</tr>
<tr>
<td>The proportion of births to AI/AN teenage women was 2.8 times that of NHW teenage women (14.0% vs 5.0%).</td>
</tr>
<tr>
<td>AI/AN mothers were 2.5 times as likely as NHW women to have accessed WIC services (56.1% vs 22.7%).</td>
</tr>
<tr>
<td>Pregnant AI/AN women were no more likely that NHW women to give birth to an infant at a low birthweight (8.3% vs 7.8%).</td>
</tr>
<tr>
<td>The AI/AN population had a homicide rate that was 6 times that of the homicide rate of the NHW population (20.5 deaths per 100,000 vs 3.4 deaths per 100,000).</td>
</tr>
<tr>
<td>The AI/AN individuals of the Billings UIH service area were no more likely than NHW individuals to die by suicide (20.5 deaths per 100,000 vs 24.8 deaths per 100,000).</td>
</tr>
</tbody>
</table>
INTRODUCTION

Across the United States, an examination of the health outcomes of urban Native people shows a disproportionately high incidence of disease, co-morbidity, and mortality, particularly among mothers. This is significant because, of the 5.2 million Americans who identify as American Indian and/or Alaska Native, 71% live in urban areas. To meet their health needs, numerous health and social service programs provide culturally attuned and holistic care. Many offer services that are grounded in Indigenous knowledge and bring traditional and Western medicine together.

As Urban Indian Health Programs and other Urban Indian Organizations strive to provide the highest-quality care to urban Native people, relevant data are needed. Since 2000, Urban Indian Health Institute (UIHI) has created an aggregate Community Health Profile (CHP), along with individual CHPs for each of the UIH sites serving the urban Indigenous population in their area.

Who are urban Indians?

Urban Indians are tribal members who are currently living outside of federally defined tribal lands in U.S. cities. For many Native communities, systemic issues such as racism, poverty, and poor education have given rise to health disparities. For urban Indians, government policies that forced relocation in the 1950s, and termination policies that forced assimilation into non-Native culture, have had long-term negative health effects. Indigenous people come to cities for educational, employment, or housing opportunities and health care needs, resulting in an Indigenous urban population that is diverse and inter-tribal.

How to use this report

Improving community health through effective planning and decision making requires reliable information. This CHP provides an overview of the health status of American Indian and Alaska Native populations who reside in the UIH service areas (Appendix A: Service Areas). While limited in scope and restricted to available data, this report provides valuable information for service providers serving an urban Indian population with unique needs and health priorities. The report is intended for use as a supplement to other local data available and can be used for program planning, applying for funding, identifying gaps in data, and conducting research.
METHODS AND DATA

THIS REPORT INCLUDES INFORMATION FROM RESIDENTS OF THE BILLINGS UIH SERVICE AREA, INCLUDING BIGHORN COUNTY AND YELLOWSTONE COUNTY, USING THE FOLLOWING DATA SOURCES:

- American Community Survey, 2013–2017
- 2010 U.S. Census, 2013–2017
- National Vital Statistics System; Death Certificates, 2013–2017
- National Vital Statistics System; Birth Certificates, 2013–2017

There are limitations to this data, particularly due to variations in how race is defined and collected.

Data Sources

2010 U.S. Census

The U.S. Census takes place every 10 years and provides official population counts for individuals living in the United States. It also presents information on age, race, Hispanic origin, and sex. Starting in 2000, the U.S. Census allowed individuals to self-report belonging to more than one racial group. Prior to the 2000 U.S. Census individuals could only select one racial group. When determining a population count, this report considers people to be AI/AN if they report AI/AN as their only race or, if available, they report being AI/AN in combination with other races.

For more information about the U.S. Census, visit: www.census.gov
American Community Survey

The American Community Survey (ACS) is a nationwide survey that collects demographic, housing, social, and economic data every year. To provide reliable estimates for small counties, neighborhoods, and population groups, the ACS provides one-, three-, and five-year aggregate estimates.

Race is self-reported in ACS with similar race categories as the U.S. Census. However, some ACS data are not easily accessible for multiple racial groups. Therefore, ACS data are reported for AI/AN alone in this report. ACS estimates in this profile are not adjusted for age. Observed differences in estimates may be due to a true difference in proportions or due to differences in age distribution in the population.

For more information about the ACS, visit: www.census.gov/acs

National Vital Statistics System

Mortality data from the National Vital Statistics System (NVSS) is generated from death certificates. All mortality data are age-adjusted to the U.S. population for the year 2000. Age-adjusted death rates are useful when comparing different populations because they remove the potential bias that can occur when comparing populations with different age distributions. For example, AI/ANs historically are a younger population than other racial groups.

Birth certificate data from NVSS data files include all documented births occurring within the U.S. as filed in each state. These data include demographic information about parents, the mother’s risk factors, information on the infant, and information on the birth.

Since not all states allow individuals to identify as more than one race, National Center for Health Statistics (NCHS) releases bridged-race population estimates for calculation of rates. The bridged-race population estimates are the result of bridging the 31 race categories in the Census 2000 and Census 2010 to four race categories due to the shifting use of 1977 Office of Management and Budget (OMB) standards to 1997 OMB standards. As a result, estimates in this report may not match local and county estimates because of differing projection methods.

For more information about Vital Statistics, visit: http://www.cdc.gov/nchs/nvss.htm
For more information about bridged-race, visit: https://www.cdc.gov/nchs/nvss/bridged_race.htm
National Notifiable Disease Surveillance System

Sexually transmitted infections (STIs) are a component of the National Notifiable Disease Surveillance System (NNDSS). Incident cases are submitted to the Centers for Disease Control and Prevention (CDC) from state health departments and other local reporting jurisdictions. The majority of cases are reported in non-STI clinic settings such as private physician offices. It is mandatory that reportable disease cases be reported to state health departments when identified by a health provider, hospital, or laboratory. However, it is voluntary that notifiable disease cases be reported to the CDC by the state for national surveillance. Estimates of rates are based on the states for the UIH service areas.

For more information about NNDSS, visit: https://www.cdc.gov/nndss/

Behavioral Risk Factor Surveillance System

Behavioral Risk Factor Surveillance System (BRFSS) is a nationwide health-related telephone survey that collects state data about U.S. residents. Random Digit Dialing (RDD) is used to conduct the surveys on landlines and cellphones. Each state uses a standardized core questionnaire, optional modules, and state-added questions. A vast amount of data on health-related risk behaviors and events, chronic health conditions, and use of preventive services are collected by this survey.

For more information about BRFSS, visit: https://www.cdc.gov/brfss/index.html

Data Limitations

Frequently, data are only available for AI/AN alone and not inclusive of AI/AN who also identify with another race or ethnicity. Therefore, the outcomes may be an underestimation of the true value of an outcome or risk factor for any indicator analyzed.

Racial misclassification impacts the accuracy of rates of disease, risk factors, or outcomes, which leads to underestimations. Racial misclassification occurs when the race of an individual is captured inaccurately, whether it be from the subjective use of personal observation by the data collector or using a surname to determine race/ethnicity. AI/AN people are more likely to experience incorrect classification on death certificates. Therefore, true morbidity and mortality rates among AI/AN people are assumed to be higher than presented in this report.3,4
Analysis

A list of indicators for the community health profile was selected after investigating available data sources. For each indicator, prevalence or incidence is calculated for the AI/AN population and compared to the NHW population. NHWs are included as the comparison group to assess disparities in health indicators in recognition of the effects of structural racism on health. The AI/AN population was defined as AI/AN only and AI/AN in combination with other races, unless otherwise indicated. The NHW population was defined as White only and excluded the Hispanic population, unless otherwise indicated. Results are calculated using aggregated data over a five-year period.

In some instances, confidence intervals—an interval of numbers used to assess the accuracy of a point estimate and measure the variability in data—are calculated and used to show differences in outcomes for specific indicators. The point estimate may be a rate such as a death rate or a frequency such as a percent of individuals living in poverty.

Confidence intervals also account for the difference between a sample from a population and the population itself. For analyses included in this report, confidence intervals are calculated at a p-value of <0.05, a 95% confidence level. This means that 95 times out of 100 the confidence interval captures the true value for the population. Where confidence intervals of the study group (AI/AN) do not overlap with the comparison group (NHW), this may be an indication of a true difference in outcomes.

Standard data suppression was used to protect the privacy of individuals within all groups, including suppression of any estimates or rates based on counts of less than 10. As a result, certain indicators that are included in the aggregate CHP are not available for individual sites due to small numbers.
SOCIODEMOGRAPHICS

The health of an individual or a population is largely determined by where they live, work, play, and learn. Race and economic status also play key roles. Decades of research show a relationship between greater social disadvantage and poorer health. Race, lack of access to education, unemployment, poverty, and housing all create inequities between urban AI/AN and NHW populations. This section presents data on measures of demographics and social determinants of health to illustrate the disparities between AI/AN and NHW populations.

Race

Race, ethnicity, and socioeconomic status directly impact the distribution of disease. Lacking access to education, employment, and other opportunities is often distributed along racial lines, thus we see stark health disparities between racial groups. Therefore, it is important to not only understand the rates of disease within a given area but also the racial distribution.

An estimated 17,800 (10.5%) individuals identified as AI/AN alone or in combination with one or more races in the Billings service area, with 15,454 (9.1%) individuals identifying as AI/AN alone (Figure 1). Those who identified as White alone comprised the largest proportion (approximately six out of seven) of the total population (86.2%) in the Billings UIH service area.

How race is defined in data matters. All sociodemographic estimates in this report represent those that identify as AI/AN alone—this is due to a limitation in the data. AI/AN are among the fastest growing multiracial group in the U.S.
Figure 1. Population by Race, Billings, 2013-2017

- White (Alone) 86.2%
- AI/AN (Alone) 9.1%
- Asian (Alone) 0.6%
- Black (Alone) 0.7%
- Hawaiian/Pacific Islander (Alone) 0.1%
- Two or more races 2.7%
- Some other race 0.6%

Source: American Community Survey, 2013-2017
Age and Sex

Rates of disease and risk factors can often vary widely between age groups as well as between sexes. For example, life expectancy differs by both race and sex. Therefore, we stratify by both age and sex to examine these differences more closely.

Relative to the NHW population, the AI/AN population in the Billings UIH Service area was younger (Figure 2). Of the AI/AN population, 49.5% were under the age of 25 years, compared to 28.9% of the NHW population. In contrast, 6.0% of the AI/AN population were over the age of 65 years, compared to 17.5% of the NHW population.

Among the AI/AN population in the Billings UIH Service Area, there were more females (51.8%) than males (48.2%), similar to the NHW population in the area (Figure 3).

Source: American Community Survey, 2013-2017
Poverty

Poverty limits access to healthy foods, quality housing, economic opportunities, and adequate health care. These foundational social and economic factors are inextricably connected to health outcomes. Also, the impacts of poverty on the health and well-being of a child can be detrimental and may have negative effects on early childhood and secondary academic achievement.

In the Billings UIH service area, AI/AN children experienced more poverty than NHW children (Figure 4). Over a third of AI/AN children aged 17 and under (35.4%) lived in households with an income below the federal poverty level. This proportion is 3.9 times that of NHW children (9.1%). Nearly a third of AI/AN families in the Billings UIH service area (32.8%) lived in households with an income below the federal poverty level, almost 5.9 times that of their NHW counterparts (5.6%). In addition, 50.8% of AI/AN single mother households experienced poverty, 2.6 times that of the proportion of NHW single mother households (19.8%). Finally, over three-tenths of AI/AN individuals lived in poverty (31.4%), compared to 9.0% of NHW individuals.

Figure 4. Poverty by Race/Ethnicity, Billings, 2013-2017

Source: American Community Survey, 2013-2017
Supplemental Nutrition Assistance Program

Households experiencing poverty are more likely to be food insecure. Food insecurity can have a negative effect on the overall health of an individual, which increases the susceptibility to negative health outcomes. As the largest food assistance program in the United States, the Supplemental Nutrition Assistance Program (SNAP), formerly known as the Food Stamp program, is a crucial part of the social safety net. SNAP reduces the prevalence of food insecurity and, in turn, can reduce the prevalence of negative health outcomes. In most states, many households with an income below 130% of the federal poverty level are eligible to receive SNAP benefits.

In the Billings UIH service area, nearly a third of AI/AN households received SNAP benefits in the past year (32.4%; Figure 5). The proportion of SNAP participation among AI/AN households in these areas was 4.5 times that of NHW households (7.2%).

Figure 5. SNAP Recipients by Race/Ethnicity, Billings, 2013-2017

Source: American Community Survey, 2013-2017
Housing

Several studies have found that home ownership is associated with many health benefits.15,16 These benefits may be explained by the fact that homeowners likely experience higher socioeconomic status, fewer problems of overcrowding, and lower exposure to neighborhood violence. In contrast, renters are more likely to experience poorer self-reported health, higher proportions of coronary heart disease, and more risk factors such as smoking.17

In the Billings UIH service area, over half of the AI/AN population (52.8\%) rented their homes compared to three-tenths of the NHW population (29.9\%; Figure 6). The proportion of the AI/AN population who rented their homes was 1.8 times that of the NHW population. In contrast, in the Billings UIH service area, home ownership among the AI/AN population was 67.3\% that of the NHW population (47.2\% vs 70.1\%, respectively).

Figure 6. Housing Tenure by Race/Ethnicity, Billings, 2013-2017

Source: American Community Survey, 2013-2017
Health Insurance Coverage

Those without health insurance coverage have higher mortality rates than those with coverage.18 Individuals without health insurance are also less likely to receive care and often take longer to recover after an unintentional injury or the onset of a chronic disease than those with health insurance.19

In the Billings UIH service area, nearly two-fifths of the AI/AN population (38.6\%) reported having no health insurance, compared to nearly a tenth of the NHW population (9.5\%; Figure 7). Over three quarters of the AI/AN individuals under the age of 65 (78.5\%) reported having no health insurance, a proportion 3.9 times that of NHW individuals (20.1\%; Figure 8). The proportion of uninsured AI/AN children under the age of 19 (29.8\%) in the Billings UIH service area was 4.3 times that of their NHW counterparts (7.0\%).

\textbf{Figure 7. No Health Insurance by Race/Ethnicity, Billings, 2013-2017}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure7.png}
\caption{No Health Insurance by Race/Ethnicity, Billings, 2013-2017}
\end{figure}

\textit{Source: American Community Survey, 2013-2017}

\textbf{Figure 8. No Health Insurance by Age and Race/Ethnicity, Billings, 2013-2017}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure8.png}
\caption{No Health Insurance by Age and Race/Ethnicity, Billings, 2013-2017}
\end{figure}

\textit{Source: American Community Survey, 2013-2017}
Disability Status

A disabling condition can be present at birth, occur early in life, can be acquired through injury or a chronic condition, or can develop later in life. In general, across a range of health indicators and social determinants of health, people with disabilities tend to fare worse than their nondisabled counterparts. It is important to include prevalence of disability as a foundation to monitor health status and existing disparities to inform program planning and to potentially obtain funding for programs for people with disabilities. However, it is important to note that the understanding of disability varies across Indigenous cultures—current ways of understanding disability are largely a result of colonization.

In the Billings UIH service area, for those under 18, 2.7% of AI/AN children reported having a disability, compared to 4.9% of NHW children (Figure 9). For those aged 18-64, the proportion of AI/AN individuals who reported having a disability was nearly equal to that of NHW individuals in the same age range who reported having a disability (10.1% vs 10.3%, respectively). Additionally, 40.2% of AI/AN individuals over the age of 65 reported having a disability compared to 33.4% of NHW individuals over the age of 65.

Figure 9. Disability by Age and Race/Ethnicity, Billings, 2013-2017

Source: American Community Survey, 2013-2017
The relationship between education and health is well documented. Those with more education are generally more likely to be employed and have access to health resources through insurance. They are also more likely to have a higher income, allowing them to afford resources when needed. Thus, disparities in life expectancy by level of education are found among all demographic groups and are increasing over time.

In the Billings UIH service area, a higher percentage of the AI/AN population aged 25 and older had neither completed high school nor passed the General Education Development (GED) exam (13.6%) compared to the NHW population (6.1%; Figure 10). A lower percentage of the AI/AN population (15.2%) reported an undergraduate or graduate degree as their highest level of education compared to the NHW population (31.3%). However, a higher percentage of the AI/AN population reported attending some college, receiving an Associate's degree, a Bachelor's degree or higher than reported receiving a high school diploma/equivalent or no diploma (53.0% vs 47.0%, respectively).

Figure 10. Education by Race/Ethnicity, Billings, 2013-2017

Source: American Community Survey, 2013-2017
Unemployment

Extensive evidence has shown that unemployment has a negative effect on health. Individuals experiencing unemployment may experience financial insecurity and are more likely to lack health insurance coverage. Beyond that, unemployment can be identified as a major stressor, causing lasting damage to the physical and emotional health of an individual.

In the Billings UIH service area, the percent of unemployed AI/AN individuals over 16 years of age was 5.2 times that of their NHW counterparts (16.5% vs 3.2%; Figure 11).

Figure 11. Unemployment by Race/Ethnicity Billings, 2013-2017

Source: American Community Survey, 2013-2017
Means of Transportation to Work

How individuals travel to work impacts their health. Researchers are still studying the effects long commutes may have on health. Time spent commuting is most often reallocated from physical activity, food preparation, time eating with family, and sleeping. Over time, these changed behavioral patterns can contribute to poor health outcomes. This indicator offers a starting step to understanding how the health of urban AI/AN people may be impacted by their commute.

For the Billings UIH service area, AI/AN and NHW workers had similar means of transportation to work. The proportion of AI/AN workers who commuted to work in a car, truck or van was 93.1% that of NHW workers (75.9% vs 81.5%, respectively; Figure 12). A difference was also seen among those who work at home, in which the rate of AI/AN workers was 59.6% that of NHW workers (2.8% vs 4.7%, respectively). Conversely, AI/AN workers carpooled to work (12.1%) at a rate which was 1.3 times that of NHW workers (9.4%). Similarly, AI/AN workers walked to work (6.4%) at a rate which was 2.5 times that of NHW workers (2.6%).
MATERNAL AND CHILD HEALTH

Understanding the state of maternal and child health (MCH) for urban Indians is key to creating the foundation for healthy children, mothers, and future generations. Tracking maternal smoking, gestational diabetes, prenatal care, and preterm births can help urban Indian health organizations make the best decisions regarding programs for pregnant mothers and infants. For the purposes of this report, language around birth and maternal health data includes traditionally female terminology, but it is understood that not every person who gives birth identifies as such.

Births by Race/Ethnicity

From 2013 to 2017 there were a total of 11,216 births across the Billings UIH service area. Among those births, about 16.0% (1,794 births) were identified as non-Hispanic American Indian or Alaska Native (AI/AN) alone (Figure 13). The largest proportions of births among the racial/ethnic groups were from non-Hispanic White (NHW) women (74.7%) and non-Hispanic AI/AN women. Hispanic women accounted for 7.0% of all births, while Non-Hispanic Asians and Pacific Islander women accounted 1.2% of all births, and non-Hispanic Black women accounted for 1.2% as well.

Births by Maternal Age Group

Birth by maternal age group is a valuable indicator to estimate access to family planning resources and services. For example, pregnant adolescents have an increased risk of preterm labor and birth, preeclampsia, and demonstrated greater odds of other health complications for both the mother and infant. In addition, pregnant women over the age of 35 also demonstrated increased odds of preterm delivery, hypertension, and other complications.

In general, AI/AN women tended to give birth at younger ages than their NHW counterparts (Figure 14). Across the Billings UIH service area, 14.0% of all births among AI/AN women were to teenage women (19 years or younger) compared to 5.0% of NHW births. The proportion of births to AI/AN teenage women were 2.8 times that of NHW teenage women. In addition, 57.8% of all births among AI/AN women were to women in their 20s, though this rate was not statistically significantly different from that of NHW women in their 20s. Conversely, NHW women had more children in their 30s compared to AI/AN women (38.1% vs. 26.7%).

Figure 14. Births by Maternal Age and Race/Ethnicity, Billings, 2013-2017

Births by Marital Status

Studies have shown positive associations between marriage and health outcomes. Married couples tend to have more than one income source providing for their family, allowing them to afford nutritious food and access to other health resources. Marital status during first birth has been found to be associated with health outcomes later on in their lives for white and black women.

Across the Billings UIH service area, 27.6% of all births to AI/AN mothers were to women who were married (Figure 15). This was statistically significantly different from the rate of births to married NHW women (66.5%). The proportion of births to unmarried AI/AN women was 2.2 times that of their NHW counterparts.

Figure 15. Births by Marital Status and Race/Ethnicity, Billings, 2013-2017

Maternal Education

Numerous studies have looked at the causal link between maternal education and maternal and child health outcomes. A mother’s primary school completion was found to be associated with positive infant health outcomes, indicated by birth weight.

Over a quarter of AI/AN births in the Billings UIH service area were to AI/AN women who did not complete high school (28.4%) and 28.6% were to AI/AN women whose highest level of education was a high school diploma or equivalent degree (Figure 16). These rates were both higher than those of NHW women who did not complete high school (7.5%) or received a high school diploma or equivalent degree (26.5%). However, the difference between the rates of AI/AN and NHW mothers whose highest level of education was high school, or the GED was not statistically significant. The highest proportion of AI/AN births were to mothers who had attended some college or received an Associate degree (38.1%). The percentage of births to AI/AN women with some college or a higher degree was statistically significantly different from that of NHW women (4.6% vs 32.6%, respectively).

Insurance Status

Maternity health coverage became mandatory in 2014 under the Affordable Care Act. A study prior to 2014 found differences in health insurance coverage could affect the type of care received during childbirth.36 For example, compared to those covered by private health insurance, those with Medicaid coverage or those who were uninsured were less likely to receive intervention during childbirth (cesarean delivery, labor induction, and episiotomy).36 Health insurance coverage has also been found to be associated with an increase in use of prenatal care, which can reduce the likelihood of adverse birth outcomes.37

Across the Billings UIH service area, rates of payment for birth through Indian Health Services, Medicaid, private insurance, and self-pay were statistically significantly different between AI/AN and NHW women (Figure 17). The biggest differences in payment source were for births paid by Medicaid and private insurance. Approximately 82.0% of AI/AN births were paid by Medicaid, whereas 32.7% of NHW births were paid by Medicaid. In contrast, 61.6% of NHW births were covered by private health insurance compared to 7.4% of AI/AN births.

Figure 17. Primary Payment Source and Race/Ethnicity, Billings, 2013-2017

* Suppressed data < 10.
Women, Infants, and Children Status

Women, Infants, and Children (WIC) is a federal program that provides supplemental food to low-income pregnant, post-partum, and breastfeeding women. AI/AN people often experience food insecurity, high rates of hunger, and malnutrition, which increases likelihood of participating in WIC services.\(^{38,39}\) Food insecurity has been found to have numerous effects on health outcomes, such as birth defects, anemia, and cognitive problems.\(^{13}\) For that reason, participation in WIC services can be a protective factor for these adverse health outcomes.

Across the Billings UIH service area, 56.1% of pregnant AI/AN women reported receiving WIC services prior to birth, compared to 22.7% of NHW women (Figure 18). AI/AN mothers were 2.5 times as likely as NHW women to have accessed these vital services.

Maternal Smoking

There are many negative infant and child outcomes linked to maternal tobacco use during pregnancy. These negative outcomes include low birthweight, preterm birth, and various birth defects. Of racial and ethnic groups, AI/AN women had the highest prevalence of smoking during pregnancy. This disparity can be attributed to a difference in access to resources and tobacco advertising that target these communities.

Across the Billings UIH service area, 18.3% of AI/AN women smoked while pregnant, compared to 12.5% of NHW women (Figure 19). AI/AN women were 1.5 times as likely as NHW women to smoke while pregnant.

Figure 19. Maternal Smoking by Race/Ethnicity, Billings, 2013-2017

Gestational Diabetes

Every year in the U.S., 2–10% of pregnancies are affected by gestational diabetes. A lack of access to prenatal care and screening services contributes to disparities in gestational diabetes seen across racial groups. Age of a pregnant person can increase their risk of developing gestational diabetes during a pregnancy. The risk of gestational diabetes tends to increase as the age of the pregnant person increases.

Across the Billings UIH service area, approximately 6.7% of AI/AN births were to women who were diagnosed with gestational diabetes during their pregnancy (Figure 20). This proportion was statistically significantly different from that of NHW women, among whom 4.2% were diagnosed with gestational diabetes. AI/AN pregnant women were 1.6 times as likely as NHW women to be diagnosed with gestational diabetes.

Figure 20. Gestational Diabetes by Race/Ethnicity, Billings, 2013-2017

Prenatal Care

Prenatal care refers to the medical attention received by women before or during their pregnancy. Early prenatal care is a significant component in ensuring a healthy pregnancy. Women who receive late or no prenatal care are at risk for having undetected complications during their pregnancy that can result in severe maternal morbidity and mortality and serious consequences to the unborn infant including low birthweight, preterm birth, and morbidity, and mortality. In addition, a lack of access, knowledge of resources and other social and structural barriers can also prevent utilization of prenatal care. Disparities in prenatal care for AI/ANs varies by region and state.

Among pregnant women within the Billings UIH service area, 38.8% of AI/AN women began prenatal care in the first trimester compared to 82.5% of NHW women, a statistically significant difference (Figure 21). In addition, 30.9% of pregnant AI/AN women began prenatal care in the third trimester or did not receive any prenatal care during their pregnancy compared to 3.8% of NHW pregnant women. The proportion of women beginning prenatal care in their third trimester or receiving no prenatal care among AI/AN women was 8.1 times that of NHW women.

Figure 21. Prenatal Care by Race/Ethnicity, Billings, 2013-2017

Cesarean Section

Cesarean sections can often be a life-saving intervention when necessary. This procedure can also lead to longer hospital stays and higher costs.50 While cesarean sections can prevent maternal and infant mortality and morbidity, there is little to no advantage for women who have the procedure electively.51,52 Cesarean sections are associated with both short- and long-term risks that come along with a major surgery such as infection, blood loss, and damage to organs.53-55 The incidence of severe complications from cesarean sections increases significantly in those over the age of 35.56 Moreover, the rate of cesarean sections has only increased among the general population, therefore we need to understand the disparities between the women receiving this procedure.50

Across the Billings UIH service area, an estimated 26.9\% of births were delivered by cesarean section among AI/AN females (Figure 22). This was not statistically significantly different from the proportion of deliveries by cesarean section among NHW births at 27.2\%.

\begin{figure}[ht]
\centering
\includegraphics[width=\textwidth]{Figure22.png}
\caption{Cesarean Section Delivery by Race/Ethnicity, Billings, 2013-2017}
\end{figure}

Preterm Births

A preterm birth is defined as a birth that occurs before 37 completed weeks of pregnancy. Preterm birth disproportionately affects AI/AN women. Tobacco use, low socioeconomic status, low maternal age, and single marital status put women at higher risk for having a preterm delivery. A factor associated with preterm birth is age—teens and women over 35 have an increased likelihood of preterm birth.

Across the Billings UIH service area, 15.3% of all infants born to AI/AN women were born preterm, which was statistically significantly different from the percentage of their NHW counterparts who gave birth preterm at 10.2% (Figure 23). Additionally, pregnant AI/AN women were 1.5 times as likely as pregnant NHW women to have an infant born preterm.

Figure 23. Preterm Birth by Race/Ethnicity, Billings, 2013-2017

Low Birthweight

Low birthweight is classified when a baby is born less than 2,500 grams, or 5 pounds 8 ounces.60 Preterm birth can result in low birthweight. Smoking during pregnancy is also associated with an increased likelihood of low birthweight.61 Additionally, it has been strongly suggested that exposure to cumulative stress such as historical trauma is associated with adverse birth outcomes.61,62

Across the Billings UIH service area, 8.3% of all infants born to AI/AN women were born at a low birthweight, which was not statistically significantly different from the rate of infants born to NHW women at a low birthweight at 7.8% (Figure 24). Pregnant AI/AN women were as likely as NHW women to give birth to an infant at a low birthweight.

Figure 24. Low Birthweight by Race/Ethnicity, Billings, 2013-2017

Neonatal Intensive Care Unit Admission

The Neonatal Intensive Care Unit (NICU) is where newborn babies go when they need intensive medical care. Newborns in the NICU can be preterm, have low birthweight, or have a birth defect. Maternal age is a factor associated with admittance to NICU. There is increased risk for an infant to be admitted to NICU if the mother is younger than age 16 or older than age 40.

Rates of admission to the NICU for newborns across the Billings UIH service area was statistically significantly different between AI/AN and NHW newborns (Figure 25). An estimated 11.8% of AI/AN newborns were admitted to the NICU compared to 8.6% NHW newborns. AI/AN newborns were 1.4 times as likely as NHW newborns to be admitted to the NICU.

Figure 25. NICU Admission by Race/Ethnicity, Billings, 2013-2017

Breastfeeding

Breastfeeding has been viewed as a way to nourish a baby’s mind, body, and spirit.64 Breastfeeding is an important way for infants to get nutrition in the first six months of their life and is tailored to the needs of the infant.65 Benefits of breastfeeding for the infant include a lower risk of asthma, obesity, ear and respiratory infection, sudden infant death syndrome (SIDS), and gastrointestinal infections.65

Across the Billings UIH service area, 75.7\% of infants born to AI/AN women were breastfeeding at the time of discharge from the hospital, compared to 91.7\% of infants born to NHW women (Figure 26). This was a statistically significant difference.

Figure 26. Breastfeeding by Race/Ethnicity, Billings, 2013-2017

Infant Mortality

Infant mortality, an important indicator of the health of a community, is defined as the number of deaths of infants younger than one year of age per 1,000 live births for a given time period.66 Infant mortality may be related to the underlying health of the mother, public health practices, socioeconomic conditions, and the availability and use of appropriate pre- and post-natal health care.66 Causes of infant deaths are primarily due to health problems of the infant or a difficult pregnancy.67

The infant mortality rate for the AI/AN population across the Billings UIH service area was 13.4 per 1,000 live births (Figure 27). This was statistically significantly different from the infant mortality rate for the NHW population (4.9 per 1,000 live births), with AI/AN infants being 2.7 times as likely as NHW infants to die within their first year of life.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure27.png}
\caption{Infant Mortality by Race/Ethnicity, Billings, 2013-2017}
\end{figure}

SEXUALLY TRANSMITTED INFECTIONS

With an estimated 20 million new infections occurring each year, STIs represent a significant public health challenge across all communities in the United States. Al/ANs experience disproportionately high rates of STIs, with rates of STIs in Al/AN communities 2–6 times greater than among NHWs. Left untreated, many STIs can lead to significant health impacts including blindness, stroke, heart disease, ectopic pregnancies, miscarriage, stillbirth, and early infant death.

Due to a limitation of the data, STI estimates represent the state where UIH service areas are located, as estimates were not available at the county level.

Within the state of Montana in 2013-2017, the rates of chlamydia and gonorrhea were statistically significantly higher among Al/AN people than NHW people (Figure 28). The rate of chlamydia among Al/AN people (1,519.3 cases per 100,000) was 4.8 times that of NHW people (318.2 cases per 100,000). The rate of gonorrhea among Al/AN people (470.4 cases per 100,000) was 16.2 times that of NHWs (29.1 cases per 100,000). The rate of syphilis among Al/ANs (3.2 cases per 100,000) was 1.5 times that of NHWs (2.1 cases per 100,000), though this difference in rates was not statistically significant.

Figure 28. Sexually-Transmitted Infections (STIs) by Race/Ethnicity, Montana, 2013-2017

Chlamydia

Chlamydia is the most common STI in the United States. It is a bacterial STI that is often asymptomatic and underreported. Disparities in chlamydia infections between AI/AN and NHW individuals is likely due to the many structural and social factors afflicting Native communities, including historical and ongoing trauma, lack of access to healthcare and screening services, poverty, and geographic isolation. Due to the asymptomatic nature of chlamydia, both screening and treatment are essential to preventing and controlling its spread. Untreated chlamydia can further spread the infection in a community, lead to permanent damage of an individual's reproductive organs, and cause pregnancy complications. Serious, untreated cases can even result in infertility.

The rate of chlamydia infection among AI/AN females in Montana (2,181.2 cases per 100,000) was statistically significantly higher than among NHW females (436.3 cases per 100,000) and was 2.6 times that of AI/AN males (845.7 cases per 100,000; Figure 29). NHW females had a rate of chlamydia infection that was 2.2 that of NHW males (201.7 cases per 100,000 population). The rate of chlamydia infection among AI/AN males was 4.2 times that of NHW males, a statistically significant difference.

Figure 29. Chlamydia Infections by Sex and Race/Ethnicity, Montana, 2013-2017

Gonorrhea

In the U.S., cases of gonorrhea increased by 67% between 2013 and 2017.69 Gonorrhea is a bacterial STI that is often asymptomatic. When left untreated, it can cause serious complications such as pelvic pain, ectopic pregnancy, and infertility.70 Untreated gonorrhea can also increase the risk of HIV transmission.70 Although it is currently treatable with antibiotics, gonorrhea has become progressively more resistant to multiple antibiotics over the past three decades. Consequently, there is a need for robust public health monitoring and response to prevent the spread of these emerging resistant strains.70

The rate of gonorrhea infection among AI/AN females in Montana (591.7 cases per 100,000) was statistically significantly higher than among NHW females (28.9 cases per 100,000) and was 1.7 times that of AI/AN males (347 cases per 100,000; Figure 30). NHW males had a rate of gonorrhea infection that was approximately the same as the rate of gonorrhea in NHW females (29.3 per 100,000 vs 28.9 per 100,000). The rate of gonorrhea infection among AI/AN males was 11.8 times that of NHW males, a statistically significant difference.

Figure 30. Gonorrhea Infections by Sex and Race/Ethnicity, Montana, 2013-2017

Syphilis

Syphilis is a serious STI caused by a bacterial infection. Syphilis is divided into stages: primary stage, secondary stage, latent stage, and tertiary stage. Early symptoms are often minor but, if left untreated, can cause severe medical problems such as paralysis, dementia, and death. Due to the underreporting of syphilis, the numbers recorded are likely an undercount of the true number of cases, even as the U.S. has reported for 2017 its highest rate of syphilis since 1993. Incidence of syphilis in the U.S. varies by racial and ethnic groups, which is likely a reflection of the social determinants of health that contribute to syphilis presence in a community.

HIV Screening

Human Immunodeficiency virus (HIV) remains a pressing public health threat throughout marginalized communities. It is estimated that 3,000 AI/AN people are living with HIV. Both structural and environmental factors contribute to increased risk of HIV infection, including environmental resources, access to care, stigma, and economic status. Among the general U.S. population, about 1 in 7 individuals with HIV do not know they are positive. It is important for individuals to get tested and to start treatment as soon as possible, if necessary.

Within the state of Montana, 38.6% of AI/AN people reported ever having been screened for HIV (Figure 31). This response was 1.6 times that of NHW people surveyed (23.7%).

Figure 31. HIV Testing by Race/Ethnicity, Montana, 2013-2017

MORTALITY

Mortality data provide an indication of a community’s or population’s health and socioeconomic development status.77,78 Mortality data are also a key component to understanding population size and future growth. Examining mortality data is one way to measure the burden of disease in a community or population.78 Tracking death rates may identify groups that are at an increased risk of premature death and may identify specific underlying causes of death that are more prevalent in certain populations. In addition, high mortality rates may indicate an issue with environmental, risk, and/or socioeconomic factors as well as communicable diseases.

All-cause Mortality

From 2013-2017, there were a total of 660 deaths among the AI/AN population in the Billings UIH service area compared to 7,157 deaths among the NHW population in the same area. The age-adjusted all-cause mortality rate for the AI/AN population was approximately 46.0% higher than the mortality rate of the NHW population (1,390.7 deaths per 100,000 vs 751.2 deaths per 100,000, respectively), a statistically significant difference (Figure 32).

All-cause Mortality by Sex

The mortality rates for both males and females were statistically significantly different between the AI/AN and NHW populations of the Billings UIH service area (Figure 33). The mortality rate for AI/AN males was 45.2% higher than that of NHW males (1,606.1 deaths per 100,000 vs 880.6 deaths per 100,000, respectively). AI/AN females (1,229.8 deaths per 100,000) had a 47.8% higher mortality rate than NHW females (641.6 deaths per 100,000). Additionally, the mortality rate for AI/AN females was 23.4% lower than AI/AN males.

Figure 33. Overall Mortality Rate by Sex and Race/Ethnicity, Billings, 2013-2017

Homicide Mortality

Homicide refers to any death caused by an assault. Non-Hispanic AI/AN individuals have been shown to have elevated mortality rates by homicide.79,80 Though there are elevated cases for AI/AN people, it is still thought that the reported homicide mortality rates are an underestimation due to racial misclassification.

In the Billings UIH service area, the AI/AN population had a statistically significantly different homicide rate from that of the NHW population (Figure 34). The homicide rate of 20.5 deaths per 100,000 among the AI/AN population was 6 times that of the homicide rate of 3.4 deaths per 100,000 among NHW.

Figure 34. Homicide Mortality Rate by Race/Ethnicity, Billings, 2013-2017

Suicide Mortality

Suicide is defined as a death caused by intentional self-directed injury.81 It is recognized as a critical public health issue on a global, national, and regional scale.81 The rates of completed suicide have been increasing in the AI/AN population since 2003.82 Accurate and reliable information on levels and trends of suicide mortality are needed to inform suicide prevention and postvention efforts.81

In the Billings UIH service area, the AI/AN population did not have a suicide rate that was statistically significantly different from that of the NHW population (20.5 deaths per 100,000 vs 24.8 deaths per 100,000, respectively; Figure 35).

Top Causes of Mortality

Mortality rates often reflect the influence of environments, risk factors, socioeconomic status, and communicable diseases. Understanding the top underlying causes of mortality can inform disease prevention goals, priorities, and strategies.

The AI/AN population of the Billings UIH service area had a number one cause-specific mortality rate of vascular disease (285.2 deaths per 100,000) which was 27.2% higher than that of the NHW population of the same area (207.6 deaths per 100,000; Table 1). The second highest cause-specific mortality rate of cancer among the AI/AN population (164.3 deaths per 100,000) was only 3.2% higher than that of the NHW population (159 deaths per 100,000). In contrast, the AI/AN population had a cause-specific mortality rate of diabetes mellitus (158.8 deaths per 100,000) which was 8 times that of the NHW population (19.8 deaths per 100,000).

Table 1. Top Causes of Mortality, Billings, 2013-2017

<table>
<thead>
<tr>
<th>Rank</th>
<th>AI/AN Cause</th>
<th>Rate (per 100k)</th>
<th>Rank</th>
<th>NHW Cause</th>
<th>Rate (per 100k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vascular Disease</td>
<td>285.2</td>
<td>1</td>
<td>Vascular Disease</td>
<td>207.6</td>
</tr>
<tr>
<td>2</td>
<td>Cancer</td>
<td>164.3</td>
<td>2</td>
<td>Cancer</td>
<td>159.0</td>
</tr>
<tr>
<td>3</td>
<td>Diabetes mellitus</td>
<td>158.8</td>
<td>7</td>
<td>Diabetes mellitus</td>
<td>19.8</td>
</tr>
<tr>
<td>4</td>
<td>Unintentional Injuries</td>
<td>140.0</td>
<td>4</td>
<td>Unintentional Injuries</td>
<td>40.6</td>
</tr>
<tr>
<td>5</td>
<td>Chronic liver disease and cirrhosis</td>
<td>87.4</td>
<td>9</td>
<td>Chronic liver disease and cirrhosis</td>
<td>9.6</td>
</tr>
</tbody>
</table>

REFERENCES

REFERENCES

REFERENCES

70. Chlamydia - CDC Fact Sheet. :2.

APPENDIX A

Sociodemographic Indicators among AI/AN (alone) in Billings Service Area vs. All Service Areas

<table>
<thead>
<tr>
<th></th>
<th>AI/AN (alone) in Billings</th>
<th>AI/AN in All UIO Service Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td># Individuals</td>
<td>15,454</td>
<td>767,432</td>
</tr>
<tr>
<td>% of Population</td>
<td>9.1%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Age (% of Population)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-4</td>
<td>11.0%</td>
<td>7.0%</td>
</tr>
<tr>
<td>5-14</td>
<td>22.3%</td>
<td>15.0%</td>
</tr>
<tr>
<td>15-24</td>
<td>16.2%</td>
<td>16.4%</td>
</tr>
<tr>
<td>25-34</td>
<td>15.6%</td>
<td>16.1%</td>
</tr>
<tr>
<td>35-44</td>
<td>10.9%</td>
<td>13.4%</td>
</tr>
<tr>
<td>45-54</td>
<td>10.1%</td>
<td>12.9%</td>
</tr>
<tr>
<td>55-64</td>
<td>7.9%</td>
<td>10.7%</td>
</tr>
<tr>
<td>65-74</td>
<td>4.4%</td>
<td>5.6%</td>
</tr>
<tr>
<td>75-84</td>
<td>1.2%</td>
<td>2.1%</td>
</tr>
<tr>
<td>85+</td>
<td>0.4%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Sex (% of Population)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>51.8%</td>
<td>51.1%</td>
</tr>
<tr>
<td>Male</td>
<td>48.2%</td>
<td>48.9%</td>
</tr>
<tr>
<td>Poverty (% of Population)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children</td>
<td>35.4%</td>
<td>30.5%</td>
</tr>
<tr>
<td>Individuals</td>
<td>31.4%</td>
<td>24.5%</td>
</tr>
<tr>
<td>Families</td>
<td>32.8%</td>
<td>20.3%</td>
</tr>
<tr>
<td>Single Mother Families</td>
<td>50.8%</td>
<td>31.0%</td>
</tr>
<tr>
<td>SNAP Recipients (% of Population)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>32.4%</td>
<td>23.6%</td>
</tr>
<tr>
<td>Housing Tenure (% of Households)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owner Occupied</td>
<td>47.2%</td>
<td>45.3%</td>
</tr>
<tr>
<td>Renter Occupied</td>
<td>52.8%</td>
<td>54.7%</td>
</tr>
<tr>
<td>No Health Insurance (% of Population)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>38.6%</td>
<td>19.7%</td>
</tr>
<tr>
<td>Age: 0-18</td>
<td>29.8%</td>
<td>12.6%</td>
</tr>
<tr>
<td>Age: 19-64</td>
<td>48.7%</td>
<td>25.3%</td>
</tr>
<tr>
<td>Age: 65+</td>
<td>6.8%</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

Source: American Community Survey, 2013-2017
<table>
<thead>
<tr>
<th>Disability (% of Population)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 0-17</td>
<td>2.7%</td>
<td>4.7%</td>
</tr>
<tr>
<td>Age: 18-64</td>
<td>10.1%</td>
<td>15.5%</td>
</tr>
<tr>
<td>Age: 65+</td>
<td>40.2%</td>
<td>46.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Education (% of Population 25 years and older)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than High School</td>
<td>13.6%</td>
<td>20.5%</td>
</tr>
<tr>
<td>High School Diploma or GED</td>
<td>33.4%</td>
<td>28.2%</td>
</tr>
<tr>
<td>Some College or Associate Degree</td>
<td>37.8%</td>
<td>34.7%</td>
</tr>
<tr>
<td>Bachelor Degree or Higher</td>
<td>15.2%</td>
<td>16.6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unemployed (% of Population 16 years and older)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>16.5%</td>
<td>11.2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commute Type (% of Employed Population 16 years and older)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Car/Truck/Van Alone</td>
<td>75.9%</td>
<td>67.9%</td>
</tr>
<tr>
<td>Carpool</td>
<td>12.1%</td>
<td>12.8%</td>
</tr>
<tr>
<td>Public Transport</td>
<td>1.4%</td>
<td>8.5%</td>
</tr>
<tr>
<td>Taxi/Bike/Other</td>
<td>1.3%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Walked</td>
<td>6.4%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Worked at Home</td>
<td>2.8%</td>
<td>3.9%</td>
</tr>
</tbody>
</table>

Source: American Community Survey, 2013-2017
APPENDIX B

Maternal and Child Health Indicators among AI/AN in Billings Service Area vs. All Service Areas

<table>
<thead>
<tr>
<th></th>
<th>AI/AN in Billings</th>
<th></th>
<th>AI/AN in All UIO Service Areas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>(95% CI)</td>
<td>%</td>
<td>(95% CI)</td>
</tr>
<tr>
<td># of Births</td>
<td>1,794</td>
<td>(15.3% - 16.7%)</td>
<td>47,556</td>
<td>(0.8% - 0.8%)</td>
</tr>
<tr>
<td>% of All Births</td>
<td>16.0%</td>
<td>(15.3% - 16.7%)</td>
<td>0.8%</td>
<td>(0.8% - 0.8%)</td>
</tr>
<tr>
<td>Maternal Age (% of Births)</td>
<td></td>
<td></td>
<td>Maternal Age (% of Births)</td>
<td></td>
</tr>
<tr>
<td>19 years or less</td>
<td>14.0%</td>
<td>(12.4% - 15.6%)</td>
<td>9.3%</td>
<td>(9.0% - 9.5%)</td>
</tr>
<tr>
<td>20-29 years</td>
<td>57.8%</td>
<td>(55.5% - 60.1%)</td>
<td>56.9%</td>
<td>(56.5% - 57.4%)</td>
</tr>
<tr>
<td>30-39 years</td>
<td>26.7%</td>
<td>(24.7% - 28.7%)</td>
<td>31.6%</td>
<td>(31.2% - 32.0%)</td>
</tr>
<tr>
<td>40 plus years</td>
<td>1.5%</td>
<td>(0.9% - 2.1%)</td>
<td>2.2%</td>
<td>(2.1% - 2.3%)</td>
</tr>
<tr>
<td>Marital Status (% of Births)</td>
<td></td>
<td></td>
<td>Marital Status (% of Births)</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>27.6%</td>
<td>(25.5% - 29.7%)</td>
<td>33.9%</td>
<td>(33.5% - 34.3%)</td>
</tr>
<tr>
<td>Maternal Education (% of Births)</td>
<td></td>
<td></td>
<td>Maternal Education (% of Births)</td>
<td></td>
</tr>
<tr>
<td>Less than High School</td>
<td>28.4%</td>
<td>(26.3% - 30.5%)</td>
<td>19.1%</td>
<td>(18.7% - 19.4%)</td>
</tr>
<tr>
<td>High School Diploma or GED</td>
<td>28.6%</td>
<td>(26.5% - 30.7%)</td>
<td>29.6%</td>
<td>(29.2% - 30.0%)</td>
</tr>
<tr>
<td>Some College or Associate Degree</td>
<td>38.1%</td>
<td>(35.9% - 40.4%)</td>
<td>33.0%</td>
<td>(26.6% - 26.7%)</td>
</tr>
<tr>
<td>Bachelor Degree or Higher</td>
<td>4.6%</td>
<td>(3.7% - 5.6%)</td>
<td>11.9%</td>
<td>(11.6% - 12.2%)</td>
</tr>
<tr>
<td>Primary Payment Source (% of Births)</td>
<td></td>
<td></td>
<td>Primary Payment Source (% of Births)</td>
<td></td>
</tr>
<tr>
<td>Indian Health Services</td>
<td>8.6%</td>
<td>(7.3% - 9.9%)</td>
<td>6.3%</td>
<td>(6.0% - 6.5%)</td>
</tr>
<tr>
<td>Medicaid</td>
<td>82.0%</td>
<td>(80.2% - 83.8%)</td>
<td>62.5%</td>
<td>(62.1% - 63.0%)</td>
</tr>
<tr>
<td>Private Insurance</td>
<td>7.4%</td>
<td>(6.2% - 8.6%)</td>
<td>26.1%</td>
<td>(70.1% - 70.2%)</td>
</tr>
<tr>
<td>Self-pay</td>
<td>1.6%</td>
<td>(1.0% - 2.2%)</td>
<td>2.0%</td>
<td>(2.6% - 2.6%)</td>
</tr>
<tr>
<td>WIC Status (% of Births)</td>
<td></td>
<td></td>
<td>WIC Status (% of Births)</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>56.1%</td>
<td>(53.7% - 58.4%)</td>
<td>52.0%</td>
<td>(52.0% - 52.9%)</td>
</tr>
<tr>
<td>Maternal Smoking (% of Births)</td>
<td></td>
<td></td>
<td>Maternal Smoking (% of Births)</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>18.3%</td>
<td>(16.5% - 20.1%)</td>
<td>9.1%</td>
<td>(8.9% - 9.4%)</td>
</tr>
<tr>
<td>Gestational Diabetes (% of Births)</td>
<td></td>
<td></td>
<td>Gestational Diabetes (% of Births)</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>6.7%</td>
<td>(5.5% - 7.9%)</td>
<td>9.9%</td>
<td>(9.6% - 10.2%)</td>
</tr>
<tr>
<td>Prenatal Care (% of Births)</td>
<td></td>
<td></td>
<td>Prenatal Care (% of Births)</td>
<td></td>
</tr>
<tr>
<td>First Trimester</td>
<td>38.8%</td>
<td>(36.9% - 40.8%)</td>
<td>64.7%</td>
<td>(64.3% - 65.1%)</td>
</tr>
<tr>
<td>Second Trimester</td>
<td>30.3%</td>
<td>(28.5% - 32.1%)</td>
<td>23.6%</td>
<td>(23.2% - 24.0%)</td>
</tr>
<tr>
<td>Third Trimester</td>
<td>26.6%</td>
<td>(25.2% - 28.0%)</td>
<td>8.4%</td>
<td>(8.2% - 8.7%)</td>
</tr>
<tr>
<td>No Prenatal Care</td>
<td>4.3%</td>
<td>(3.7% - 4.8%)</td>
<td>3.2%</td>
<td>(3.1% - 3.4%)</td>
</tr>
<tr>
<td>Cesarean Section Delivery (% of Births)</td>
<td></td>
<td></td>
<td>Cesarean Section Delivery (% of Births)</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>26.9%</td>
<td>(24.9% - 29.0%)</td>
<td>27.7%</td>
<td>(27.3% - 28.1%)</td>
</tr>
<tr>
<td>Preterm Birth (% of Births)</td>
<td></td>
<td></td>
<td>Preterm Birth (% of Births)</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>15.3%</td>
<td>(13.7% - 17.0%)</td>
<td>13.3%</td>
<td>(13.0% - 13.7%)</td>
</tr>
<tr>
<td>Low Birthweight (% of Births)</td>
<td></td>
<td></td>
<td>Low Birthweight (% of Births)</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>8.3%</td>
<td>(7.0% - 9.6%)</td>
<td>7.6%</td>
<td>(7.4% - 7.9%)</td>
</tr>
</tbody>
</table>

NICU Admission (% of Births)

<table>
<thead>
<tr>
<th></th>
<th>AI/AN in Billings</th>
<th>AI/AN in All UIO Service Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>All</td>
<td>11.8%</td>
<td>(10.3% - 13.3%)</td>
</tr>
</tbody>
</table>

Breastfeeding (% of Births)

<table>
<thead>
<tr>
<th></th>
<th>Rate per 1,000 Live Births</th>
<th>Rate per 1,000 Live Births</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(95% CI)</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>All</td>
<td>75.7%</td>
<td>81.9%</td>
</tr>
<tr>
<td></td>
<td>(73.7% - 77.7%)</td>
<td>(81.5% - 82.3%)</td>
</tr>
</tbody>
</table>

Infant Mortality (Rate per 1,000 Live Births)

<table>
<thead>
<tr>
<th></th>
<th>Rate per 1,000 Live Births</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(95% CI)</td>
</tr>
<tr>
<td>All</td>
<td>13.4</td>
</tr>
<tr>
<td></td>
<td>(8.3 - 18.5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Rate per 1,000 Live Births</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(95% CI)</td>
</tr>
<tr>
<td>All</td>
<td>14.2</td>
</tr>
<tr>
<td></td>
<td>(13.2 - 15.1)</td>
</tr>
</tbody>
</table>

APPENDIX C

Sexually Transmitted Infection (STI) Indicators among AI/AN in Montana vs. All Service States

<table>
<thead>
<tr>
<th></th>
<th>AI/AN in Montana</th>
<th>AI/AN in All UIO Service States</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rate per 100,000</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>Chlamydia (Rate per 100,000 Population)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>1519.3</td>
<td>(1442.9 - 1595.7)</td>
</tr>
<tr>
<td>Female</td>
<td>2181.2</td>
<td>(2089.7 - 2272.8)</td>
</tr>
<tr>
<td>Male</td>
<td>845.7</td>
<td>(788.7 - 902.7)</td>
</tr>
<tr>
<td>Gonorrhea (Rate per 100,000 Population)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>470.4</td>
<td>(427.9 - 512.9)</td>
</tr>
<tr>
<td>Female</td>
<td>591.7</td>
<td>(544.0 - 639.4)</td>
</tr>
<tr>
<td>Male</td>
<td>347.0</td>
<td>(310.5 - 383.5)</td>
</tr>
<tr>
<td>Syphilis (Rate per 100,000 Population)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>3.2</td>
<td>(0.0 - 6.6)</td>
</tr>
<tr>
<td>Ever HIV Tested (% of Population)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>38.6%</td>
<td></td>
</tr>
</tbody>
</table>

APPENDIX D

Mortality Indicators among AI/AN in Billings Service Area vs. All Service Areas

<table>
<thead>
<tr>
<th></th>
<th>AI/AN in Billings</th>
<th>AI/AN in All UIO Service Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rate per 100,000</td>
<td>Rate per 100,000</td>
</tr>
<tr>
<td></td>
<td>(95% CI)</td>
<td>(95% CI)</td>
</tr>
<tr>
<td># of Deaths</td>
<td>660</td>
<td>26,600</td>
</tr>
<tr>
<td>All Cause Mortality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>1390.7 (1264.8 - 1516.5)</td>
<td>533.4 (526.4 - 540.4)</td>
</tr>
<tr>
<td>Female</td>
<td>1229.8 (1075.7 - 1384.0)</td>
<td>449.9 (441.4 - 458.4)</td>
</tr>
<tr>
<td>Male</td>
<td>1606.1 (1387.7 - 1824.5)</td>
<td>637.7 (625.7 - 649.6)</td>
</tr>
<tr>
<td>Homicide Mortality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>20.5 (10.1 - 31.0)</td>
<td>5.7 (5.2 - 6.3)</td>
</tr>
<tr>
<td>Suicide Mortality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>20.5 (10.4 - 30.7)</td>
<td>9.8 (9.1 - 10.6)</td>
</tr>
</tbody>
</table>
