The mission of the UIHI is to support the health and well-being of urban Indian communities through information, scientific inquiry, and technology.

This report was prepared by: Adrian Dominguez, MS; Joshua Smith, BS; Kelsey Liu, MPH; with the support of Alyssa Yang, MPH; Brinda Sivaramkrishinan, MPH; Colin Gerber, MPH; and Leah Dodge, MPH.

Recommended Citation:

Urban Indian Health Institute, Seattle Indian Health Board. (2017). *Community Health Profile: Individual Site Report, Lincoln Urban Indian Health Program Service Area*. Seattle, WA: Urban Indian Health Institute.
Acknowledgements

Funding for this report was provided by the Indian Health Service Division of Epidemiology and Disease Prevention. The report contents are solely the responsibility of the authors and do not necessarily represent the official views of the Indian Health Service. Additionally, UIHI would like to acknowledge the contributions of Francesca Murnan, MPA; Katherine Ly, BA; and Alexa Fay for their help in the production and review of this report.

The Urban Indian Health Institute would like to thank the staff at the Urban Indian Health Programs, social service and faith based agencies for the excellent work they do daily on behalf of their communities.
Urban Indian Health Programs (UIHPs) are private, non-profit corporations that serve American Indian and Alaska Native (AI/AN) people in select cities with a range of health and social services from outreach and referral to full ambulatory care.

UIHPs are a network of 32 independent health agencies funded in part under Subchapter IV (formerly Title V) of the Indian Health Care Improvement Act and receive limited grants and contracts from the federal Indian Health Service (IHS). UIHPs are located in 18 states and serve individuals in approximately 100 U.S. counties where over 1.2 million AI/ANs reside.¹ In addition, there are numerous social service and faith based organizations serving the public health needs of urban AI/ANs.

UIHPs provide traditional health care services, cultural activities, and a culturally appropriate place for urban AI/ANs to receive health care. Comprehensive clinics provide direct primary care for at least 40 hours per week; Limited clinics provide direct primary care services for under 40 hours per week; and Outreach and Referral sites do not provide direct care services on site but refer patients to external health care providers. The map below identifies these sites, some of whom have multiple clinic locations. It does not include AI/AN social service or faith based agencies.

For more information on individual Urban Indian Health Programs, visit http://www.uihi.org/urban-indian-health-organization-profiles/.
INTRODUCTION AND PURPOSE

Introduction
This community health profile provides an overview of the health status of AI/ANs living in select urban counties served by the Nebraska Urban Indian Health Coalition (NUIHC), which is one of 32 Subchapter IV UIHPs across the country. The counties analyzed in this report are defined as Woodbury County, Douglas County, Lancaster County, Sarpy County and Washington County by IHS. This report will refer to the service area as the Lincoln service area or Nevada Urban Indian Health Coalition. This document presents data specific to demographics, social determinants of health, mortality, and maternal and child health. The data used are from national data sources and in no way use patient data from the NUIHC. The profile examines and addresses the disparities that exist among the urban AI/AN population compared to the non-Hispanic White (NHW) population and demonstrates the disproportionality in outcomes and risk factors that adversely affect them. Data for this profile come from the U.S. Census, the American Community Survey, and the U.S. Center for Health Statistics. Not all issues important to the health of urban AI/AN communities are included in this report. Locally collected data may provide additional information about the health of AI/ANs living in Lincoln service area. Data presented in this report may be most useful when combined with aggregate data, stories about patients and community members, and local surveillance or survey data when available.

Purpose
Improving community health through effective planning and decision-making requires good information about the factors that influence the health status of community members. The following examples suggest possible ways to use the data from this report. UIHI is available to provide technical assistance on how to use the following data.

Program Planning
Data in this report can be used by UIHPs to identify health priorities, allocate resources, and guide the development of new programs.

Grant Writing
Data and figures in this report may be useful to include as background information for grant applications. This information can illustrate existing health disparities in the AI/AN population compared to NHW. This report can also be cited as the reference.

Identifying Gaps in Data
This report may also reveal current gaps in nationally collected data. For example, notably low mortality rates may indicate the need for improvements to race determination in death records. State and regional linkage projects can help correctly classify AI/ANs in state death records. Oversampling AI/ANs in national surveys is another way to improve data collection by providing sufficient statistical power to provide more stable estimates.
METHODOLOGY

Methods

Analysis
The data for this report only includes information from Woodbury County, Douglas County, Lancaster County, Sarpy County and Washington County residents. For each indicator, prevalence or incidence was calculated for the AI/AN population and compared with the NHW population. Because NHWs are the racial/ethnic majority, this population was chosen as the comparison group. The AI/AN population was defined as AI/AN only (not in combination with other races) unless otherwise indicated. The NHW population was defined as White only and excluded the Hispanic population unless otherwise indicated. Results were calculated using aggregate data from a two- to five-year time-period in order to have sufficient data to provide stable estimates and protect individual privacy.

In some instances, confidence intervals were calculated and used to show differences in outcomes for specific indicators displayed in bar graphs. Confidence intervals are ranges of numbers used to assess the accuracy of a point estimate and measure the variability in the data. The point estimate may be a rate, such as a death rate or an infectious disease rate, or a frequency, such as the percent of individuals living in poverty or the percent of adults experiencing unemployment. Confidence intervals account for the uncertainty that arises from the natural variation inherent in the world around us.

Confidence intervals also account for the difference between a sample from a population and the population itself. For analyses included in this report, confidence intervals were calculated at a p-value of <0.05, the 95 percent confidence level. This means that 95 times out of 100 the confidence interval captures the true value for the population. Differences in outcomes were called statistically significant if confidence intervals of the study group (AI/AN), did not overlap with the comparison group (NHW).

Data analysis for indicators were analyzed using the statistical software StataSE version 13 or SAS version 9.4.

Indicator Selection
A list of indicators for the community health profile were selected after an analysis of the available data sources. Sample size and stratification of each population based on demographics, such as age groups, gender, and education, were considered and used if the sample size was sufficient.

This profile uses national surveillance data. This report does not pull data from the client database of the NUIHC or any other urban AI/AN serving organization in the area. There may be information not captured by these systems that better represent the unique strengths and challenges in communities served by the NUIHC. Local sources of data may provide a more region-specific and comprehensive understanding of the community's health.
METHODOLOGY

Data Limitations

The contents of this report are specific to national surveillance data for Woodbury County, Douglas County, Lancaster County, Sarpy County and Washington County residents only.

Although data analysis and assessment of results were conducted for 42 indicators, data limitations were observed and experienced during the selection of these indicators and their analyses for this report. In some instances, the number of cases/sample size was limited, thus impacting the analysis and preventing or limiting the reporting of results. For example, the mortality analysis within this report only includes information from Douglas County, since it was the only county with a large enough sample size. Frequently, data were only available for AI/ANs alone and was not inclusive of AI/ANs who also identify with another race or ethnicity. Thus, the estimates provided in this report may be an underestimation of the true value of the outcome or risk factor for any indicator analyzed in this report.

Another factor affecting and limiting the analysis of data are errors in racial misclassification, particularly for demographic and mortality data. Racial misclassification is defined as incorrect coding of an individual’s race or ethnicity in public records. This can greatly underestimate the true rate of disease, risk factor, or outcome. AI/ANs are especially likely to experience problems of incorrect classification on death certificates; therefore, true mortality rates among AI/ANs are assumed to be higher than reported numbers suggest. Because mortality data are extracted from death certificates, the race/ethnicity category is not self-reported and is often completed by a funeral director based on information received from a family member or personal observation. In a national sample, age-adjusted mortality for AI/ANs was underestimated by 9.7%. The bias created by misclassification varies by age, proximity to a reservation, and cause-of-death.

Based on documented racial misclassification of AI/ANs in surveillance data, any of the health disparities presented in this community health profile are assumed to be larger than reported.

Lastly, we would like to acknowledge the presence of other gender identities outside of male and female categories including Two-Spirit and transgender identities which are systemically ignored and not included in these larger national surveillance systems. The lack of these other categories for gender can lead to invisibility and lack of information to support the health and well-being of people outside of binary gender identities, thus limiting our data analysis.
DATA SOURCES

Data Sources

2010 U.S. Census
The U.S. Census takes place every 10 years and provides official population counts for individuals living in the United States and provides information by age, race, Hispanic origin, and sex. In 2010, the U.S. Census allowed individuals to self-report belonging to more than one race group. When determining a population count, this report considers people to be of AI/AN race if they report AI/AN as their only race or if they report being AI/AN in combination with other races. Some Census statistics are not easily accessible when including individuals who report multiple races. For these indicators in the profile, only individuals who report AI/AN alone are included.

For more information about the U.S. census, visit: www.census.gov.

American Community Survey
The American Community Survey (ACS) is a nationwide, continuous survey that collects demographic, housing, social, and economic data every year. To provide reliable estimates for small counties, neighborhoods, and population groups, the ACS provides 1-, 3-, and 5-year aggregate estimates. Estimates for this report are from aggregated data from 2010-2014.

Race is self-reported on ACS, with similar race categories as the U.S. Census. However, some ACS data are not easily accessible for multiple race groups. Therefore, ACS data are reported for AI/AN alone in this report. ACS estimates in this profile are not adjusted for age; observed differences in estimates may be due to a true difference in rates or due to differences in age distribution in the population.

For more information about the ACS, visit: www.census.gov/acs.

National Vital Statistics System
Mortality data from the National Vital Statistics System (NVSS) are generated from death certificates. These data are the primary source of demographic, geographic, and cause-of-death information among persons dying in a given year. The five most recent years for which complete mortality data were available was from 2010-2014. The five most recent years for which complete infant mortality data were available was from 2008-2012. Maternal mortality was only available from aggregated data from 2010 to 2012. All mortality data are age-adjusted to the U.S. population for the year 2000. Age-adjusted death rates are useful when comparing different populations because they remove the potential bias that can occur when comparing populations with different age distributions. For example, AI/ANs historically are a younger population than other race groups.

Birth certificate data from NVSS data files include all documented births occurring within the United States as filed in each state. These data include demographic information about parents,
DATA SOURCES

information on the infant, the mother’s risk factors, and information on the birth. The five most recent years for which complete natality data were available was from 2008-2012.

Since not all states allow individuals to identify as more than one race, National Center for Health Statistics (NCHS) releases bridged-race population estimates for calculation of rates. As a result, estimates in this report may not match local and county estimates because of differing projection methods.

Introduction

The health of individuals and populations is greatly influenced by social determinants – the conditions in which people live, learn, work, and play. Evidence from decades of research on the relationship between key social determinants and health outcomes overwhelmingly suggests that greater social disadvantage leads to poorer health. These determinants, including race, lack of access to education or employment, poverty, and housing, among other things, produce extensive inequities within and between populations. This section presents data on measures of demographics and social determinants of health to illustrate differences between urban AI/ANs and NHWs that may contribute to overall health inequities between these populations.

Age and Gender

Relative to the NHW population, the AI/AN population in the Lincoln service area was younger (Figure 1 and Figure 2). In all Lincoln service areas combined, 45.0% of AI/ANs were under the age of 25 years, compared with 33.0% of NHWs. In contrast, 5.4% of AI/ANs were over the age of 65 years, compared with 13.1% of NHWs. Between the ages of 45 and 54 years, a shift in AI/AN women making up a greater proportion of the total AI/AN population occurred; however, this event did not occur among NHWs until the ages of 55 to 64, a complete decade later.

Figure 1. AI/AN Population by Age and Gender, Lincoln Service Area, 2010-2014

<table>
<thead>
<tr>
<th>Age 85 or older</th>
<th>AI/AN Females</th>
<th>AI/AN Males</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 75-84</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Age 65-74</td>
<td>4.1</td>
<td>2.6</td>
</tr>
<tr>
<td>Age 55-64</td>
<td>7.7</td>
<td>9.2</td>
</tr>
<tr>
<td>Age 45-54</td>
<td>16.5</td>
<td>10.5</td>
</tr>
<tr>
<td>Age 35-44</td>
<td>13.8</td>
<td>15.5</td>
</tr>
<tr>
<td>Age 25-34</td>
<td>12.3</td>
<td>13.6</td>
</tr>
<tr>
<td>Age 15-24</td>
<td>15.4</td>
<td>21.4</td>
</tr>
<tr>
<td>Age 5-14</td>
<td>17.5</td>
<td>18.4</td>
</tr>
<tr>
<td>Age 0-4</td>
<td>10.6</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Figure 2. NHW Population by Age and Gender, Lincoln Service Area, 2010-2014

<table>
<thead>
<tr>
<th>Age 85 or older</th>
<th>NHW Females</th>
<th>NHW Males</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 75-84</td>
<td>4.6</td>
<td>3.4</td>
</tr>
<tr>
<td>Age 65-74</td>
<td>7.4</td>
<td>6.8</td>
</tr>
<tr>
<td>Age 55-64</td>
<td>13.0</td>
<td>12.5</td>
</tr>
<tr>
<td>Age 45-54</td>
<td>13.9</td>
<td>14.1</td>
</tr>
<tr>
<td>Age 35-44</td>
<td>12.4</td>
<td>13.0</td>
</tr>
<tr>
<td>Age 25-34</td>
<td>14.5</td>
<td>15.2</td>
</tr>
<tr>
<td>Age 15-24</td>
<td>13.8</td>
<td>14.5</td>
</tr>
<tr>
<td>Age 5-14</td>
<td>11.8</td>
<td>12.8</td>
</tr>
<tr>
<td>Age 0-4</td>
<td>6.0</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Source: American Community Survey, 2010-2014
SOCIODEMOGRAPHICS

Race
As shown in Figure 3, an estimated 7,787 (0.7%) individuals identified as AI/AN alone in all Lincoln service areas combined, and an estimated 18,239 (1.6%) individuals identified as AI/AN alone or in combination with one or more races (data not shown). Those who identified as White alone comprised the largest proportion (83.7%) of the total population (859,790) in Lincoln service areas. In addition, Black or African Americans alone were the second largest population identified in Lincoln service areas, consisting of 81,276 individuals or 7.3% of the total population.

Figure 3. Population by Race, Lincoln Service Area, 2010-2014

Employment
Extensive evidence has shown that unemployment has a negative effect on health. Unemployed individuals may experience financial insecurity and reduction in social status, social relations, and self-esteem. In addition, unemployed individuals are also more likely to lack health insurance coverage. In all Lincoln service areas combined, the percent of unemployed AI/ANs over 16 years of age was 3.4 times higher than NHWs (16.7% vs. 4.9%; Figure 4). These proportions do not include individuals in the military or individuals who are institutionalized.

Figure 4. Civilian Labor Force 16 Years and Older, Lincoln Service Area, 2010-2014

Source: American Community Survey, 2010-2014
SOCIODEMOGRAPHICS

Poverty
Poverty and health are inextricably connected. Poverty may lead to poor health outcomes by limiting access to healthy foods, quality housing, safe neighborhoods, and adequate health care, among other things. Poverty can also impact many aspects of a child’s health and well-being. Children in poverty have lower academic achievement and higher proportion of high school dropout, accidents, injuries, and food insecurity compared with their more affluent peers. Living in poverty as a child affects health throughout a person’s lifespan. The American Community Survey defines individuals and families as being in poverty if their income is less than the poverty threshold (less than 100% of the federal poverty level).

In all Lincoln service areas combined, more than two fifths of AI/AN individuals lived in poverty (41.3%), compared to approximately one tenth for NHWs (9.5%; Figure 5). AI/AN children experienced more poverty than NHWs. Almost one half of AI/AN children aged 17 and under (48.7%) in all Lincoln service areas combined lived in households with an income below the federal poverty level. This proportion is 4.9 times that of the NHW population (10.0%). In addition, nearly two fifths of AI/AN families in all Lincoln service areas combined (39.7%) lived in households with an income below the federal poverty level. This is 7.0 times the proportion of NHWs (5.7%). Finally, among those families in households headed by single mothers, almost half of AI/ANs lived in poverty (49.5%), nearly 2.5 times the proportion of NHWs (20.2%).

Figure 5. Income Below the Federal Poverty Level in Past Year, Lincoln Service Area, 2010-2014

Source: American Community Survey, 2010-2014

Data note: Federal poverty thresholds are used to determine poverty status. The thresholds are based on family size and the ages of family members. Federal poverty thresholds are not intended as a comprehensive description of families’ needs, but rather as a statistical indicator that can be tracked over time.
Educational Attainment

The relationship between education and health, or the “health-education gradient,” is well documented. Disparities in life expectancy by level of education are found among all demographic groups and are arguably increasing over time. In all Lincoln service areas combined, a higher percentage of AI/ANs aged 25 and older had not completed high school or passed the General Educational Development (GED) exam (24.8%) compared with the NHW population (4.7%; Figure 6). A lower percentage of AI/ANs (13.7%) reported an undergraduate or graduate degree as their highest level of education compared with the NHW population (38.0%).

Figure 6. Educational Attainment for the Population 25 Years and Older, Lincoln Service Area, 2010-2014

Source: American Community Survey, 2010-2014
Health Insurance Coverage
Compared to those with health insurance coverage, those without health insurance coverage have higher mortality rates.19 Individuals without health insurance are also less likely to receive care and take longer to return to health after an unintentional injury or the onset of a chronic disease compared to those with health insurance.20 In all Lincoln service areas combined, one in four AI/ANs under age 65 (25.3\%) reported having no health insurance, a proportion 3.2 times higher than that of NHWs (7.9\%; Figure 7). The proportion of uninsured AI/AN children under the age of 18 in all Lincoln service areas is 2.4 times higher than NHW children (8.2\% vs. 3.4\%, Figure 8).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure7.png}
\caption{Population Under 65 with No Health Insurance Coverage, Lincoln Service Area, 2010-2014}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure8.png}
\caption{Population Under 18 with No Health Insurance Coverage, Lincoln Service Area, 2010-2014}
\end{figure}
Housing

Housing and health are also closely linked. Several studies have found that home ownership is associated with many health benefits, including greater psychosocial wellbeing and lower mortality risk. These benefits may be explained by the fact that homeowners likely experience higher socioeconomic status, fewer problems of overcrowding, and lower exposure to neighborhood violence. In contrast, renters are more likely to experience poorer self-reported health, higher proportion of coronary heart disease, and more risk factors, such as smoking.21

In all Lincoln service areas combined, the proportion of renter occupation among AI/ANs was 2.0 times higher than NHWs (65.1% vs. 32.0%, Figure 9). Over half of all homes of AI/ANs were renter occupied, compared with approximately one-third of homes for NHWs. In contrast, the proportion of home ownership among NHWs in all Lincoln service areas combined was 1.9 times higher than among AI/ANs (68.0% vs. 34.9%). About a third of AI/AN homes were owner occupied, compared with nearly two-thirds of homes for NHWs.
SOCIODEMOGRAPHICS

Food Stamps
As the largest food assistance program in the United States, the Supplemental Nutrition Assistance Program (SNAP; formally known as the federal Food Stamp program) is a crucial part of the social safety net. Households with an income below 130% of the federal poverty level are eligible to receive SNAP benefits. According to a study done by the U.S. Department of Agriculture, which administers the SNAP program, 55% of households receiving SNAP benefits remained food insecure after receiving SNAP. Moreover, children in households that receive SNAP benefits are significantly more likely to suffer from an array of health problems than those in households that do not receive SNAP.22

In all Lincoln service areas combined, nearly two fifths of AI/AN households received SNAP benefits in the past year (Figure 10). The proportion of SNAP participation among AI/ANs in these areas was 5.1 times higher than NHWs.

Figure 10. Households that Received SNAP Benefits in the Past Year, Lincoln Service Area, 2010-2014

Source: American Community Survey, 2010-2014
Mortality data provides an indication of a community's or population's health and socioeconomic development status. Mortality data are also a key component in understanding population size, future growth, and change. Examining mortality data is one way to measure the burden of disease in a community or population. Tracking death rates may identify groups that are at an increased risk for premature death and may identify specific diagnoses resulting in death that are more prevalent in certain populations. In addition, high mortality rates may indicate an issue with environmental factors, communicable diseases, risk factors, and/or socioeconomic factors. This section examines age-adjusted mortality by race, gender, age groups, and specific causes of mortality. It is important to note that racial misclassification leads to an underestimation of mortality rates in AI/AN populations. True mortality rates among AI/ANs in Lincoln service areas are assumed to be higher than the rates described for this section.

All-Cause Mortality Rate
The all-cause mortality rate was similar for the AI/AN and NHW populations (Figure 11).

Figure 11. All-Cause Mortality Rate, Lincoln Service Area, 2010-2014

Source: US Center for Health Statistics, Death Certificates, 2010-2014
Mortality Rate by Gender
The mortality rates for both males and females were similar among AI/ANs compared to their NHW counterparts (Figure 12). In addition, the mortality rate for AI/AN women was similar to AI/AN men.

Suicide
The suicide rate 5.2 times higher among NHWs compared to AI/ANs (Figure 13). AI/ANs experienced suicide rates of 2.4 per 100,000 compared to the NHW rate of 12.5 per 100,000.

Source: US Center for Health Statistics, Death Certificates, 2010-2014
Homicide rates were 3.6 times higher for the AI/AN population compared to the NHW population (Figure 14). True disparities in homicide rates become apparent when looking at homicide by gender. Homicides for AI/AN males were 24.6 per 100,000 (Figure 15). This rate is 3.8 times higher than NHW males. The homicide rate of AI/AN females is 3.0 times higher than NHW females.

Figure 14. Overall Homicide Rate, Lincoln Service Area, 2010-2014

![Overall Homicide Rate](image)

Source: US Center for Health Statistics, Death Certificates, 2010-2014

Figure 15. Homicide Rate by Gender, Lincoln Service Area, 2010-2014

![Homicide Rate by Gender](image)

Source: US Center for Health Statistics, Death Certificates, 2010-2014
MORTALITY

Top Causes of Mortality

Table 1. Overall Top Causes of Mortality, Lincoln Service Area, 2010-2014

<table>
<thead>
<tr>
<th>Rank</th>
<th>Cause</th>
<th>Rate (per 100,000)</th>
<th>NHW</th>
<th>Rank</th>
<th>Cause</th>
<th>Rate (per 100,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vascular disease</td>
<td>1,756.5</td>
<td></td>
<td>1</td>
<td>Vascular disease</td>
<td>750.1</td>
</tr>
<tr>
<td>2</td>
<td>Cancer</td>
<td>552.9</td>
<td></td>
<td>2</td>
<td>Cancer</td>
<td>525.4</td>
</tr>
<tr>
<td>3</td>
<td>Diabetes</td>
<td>131.5</td>
<td></td>
<td>3</td>
<td>Chronic lower respiratory disease</td>
<td>136.7</td>
</tr>
<tr>
<td>4</td>
<td>Chronic lower respiratory disease</td>
<td>102.7</td>
<td></td>
<td>4</td>
<td>Diabetes</td>
<td>50.9</td>
</tr>
<tr>
<td>5</td>
<td>Chronic liver disease and cirrhosis</td>
<td>84.1</td>
<td></td>
<td>5</td>
<td>Alzheimer’s disease</td>
<td>44.7</td>
</tr>
</tbody>
</table>

Source: US Center for Health Statistics, Death Certificates, 2010-2014

Table 1 summarizes the top causes of mortality for both AI/AN and NHW.

Table 2. Top Male Causes of Mortality, Lincoln Service Area, 2010-2014

<table>
<thead>
<tr>
<th>Rank</th>
<th>Cause</th>
<th>Rate (per 100,000)</th>
<th>NHW</th>
<th>Rank</th>
<th>Cause</th>
<th>Rate (per 100,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vascular disease</td>
<td>624.3</td>
<td></td>
<td>1</td>
<td>Vascular disease</td>
<td>338.5</td>
</tr>
<tr>
<td>2</td>
<td>Cancer</td>
<td>520.9</td>
<td></td>
<td>2</td>
<td>Cancer</td>
<td>307.8</td>
</tr>
<tr>
<td>3</td>
<td>Diabetes</td>
<td>131.5</td>
<td></td>
<td>3</td>
<td>Chronic lower respiratory disease</td>
<td>80.4</td>
</tr>
<tr>
<td>4</td>
<td>Chronic liver disease and cirrhosis</td>
<td>46.0</td>
<td></td>
<td>4</td>
<td>Diabetes</td>
<td>31.3</td>
</tr>
<tr>
<td>5</td>
<td>Chronic lower respiratory disease</td>
<td></td>
<td></td>
<td>5</td>
<td>Flu and pneumonia</td>
<td>27.2</td>
</tr>
</tbody>
</table>

Source: US Center for Health Statistics, Death Certificates, 2010-2014

Table 2 summarizes the top causes of mortality for both AI/AN and NHW men.
MORTALITY

Table 3. Top Female Causes of Mortality, Lincoln Service Area, 2010-2014

<table>
<thead>
<tr>
<th>Rank</th>
<th>Cause</th>
<th>Rate (per 100,000)</th>
<th>Rank</th>
<th>Cause</th>
<th>Rate (per 100,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vascular disease</td>
<td>267.8</td>
<td>1</td>
<td>Vascular disease</td>
<td>220.1</td>
</tr>
<tr>
<td>2</td>
<td>Cancer</td>
<td>260.7</td>
<td>2</td>
<td>Cancer</td>
<td>209.2</td>
</tr>
<tr>
<td>3</td>
<td>Diabetes</td>
<td>74.0</td>
<td>3</td>
<td>Chronic lower respiratory disease</td>
<td>56.7</td>
</tr>
<tr>
<td>4</td>
<td>Chronic lower respiratory disease</td>
<td>72.9</td>
<td>4</td>
<td>Alzheimer’s disease</td>
<td>30.9</td>
</tr>
<tr>
<td>5</td>
<td>Alzheimer’s disease</td>
<td>67.1</td>
<td>5</td>
<td>Diabetes</td>
<td>19.5</td>
</tr>
</tbody>
</table>

Source: US Center for Health Statistics, Death Certificates, 2010-2014

Table 3 summarizes the top causes of mortality for both AI/AN and NHW women.

Cancer Mortality

Table 4. Overall Top Causes of Cancer Mortality, Lincoln Service Area, 2010-2014

<table>
<thead>
<tr>
<th>Rank</th>
<th>Cause</th>
<th>Rate (per 100,000)</th>
<th>Rank</th>
<th>Cause</th>
<th>Rate (per 100,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tracheal/Bronchus/Lung cancer</td>
<td>204.4</td>
<td>1</td>
<td>Tracheal/Bronchus/Lung cancer</td>
<td>152.9</td>
</tr>
<tr>
<td>2</td>
<td>Pancreatic cancer</td>
<td>58.1</td>
<td>2</td>
<td>Colon cancer</td>
<td>43.4</td>
</tr>
<tr>
<td>3</td>
<td>Colon cancer</td>
<td>56.9</td>
<td>3</td>
<td>Pancreatic cancer</td>
<td>33.3</td>
</tr>
<tr>
<td>4</td>
<td>Leukemia</td>
<td>24.6</td>
<td>4</td>
<td>Breast cancer</td>
<td>32.8</td>
</tr>
<tr>
<td>5</td>
<td>Stomach cancer</td>
<td>18.9</td>
<td>5</td>
<td>Bladder cancer</td>
<td>27.8</td>
</tr>
</tbody>
</table>

Source: US Center for Health Statistics, Death Certificates, 2010-2014

Table 4 summarizes the top causes of cancer mortality for both AI/AN and NHW.
Table 5. Top Male Causes of Cancer Mortality, Lincoln Service Area, 2010-2014

<table>
<thead>
<tr>
<th>Rank</th>
<th>Cause</th>
<th>Rate (per 100,000)</th>
<th>Rank</th>
<th>Cause</th>
<th>Rate (per 100,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Colon cancer</td>
<td>59.8</td>
<td>1</td>
<td>Tracheal/Bronchus/Lung cancer</td>
<td>82.2</td>
</tr>
<tr>
<td>2</td>
<td>Pancreatic cancer</td>
<td>10.7</td>
<td>2</td>
<td>Prostate cancer</td>
<td>26.6</td>
</tr>
</tbody>
</table>

Source: US Center for Health Statistics, Death Certificates, 2010-2014

Table 5 summarizes the top causes of cancer mortality for both AI/AN and NHW men.

Table 6. Top Female Causes of Cancer Mortality, Lincoln Service Area, 2010-2014

<table>
<thead>
<tr>
<th>Rank</th>
<th>Cause</th>
<th>Rate (per 100,000)</th>
<th>Rank</th>
<th>Cause</th>
<th>Rate (per 100,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tracheal/Bronchus/Lung cancer</td>
<td>121.8</td>
<td>1</td>
<td>Tracheal/Bronchus/Lung cancer</td>
<td>58.4</td>
</tr>
<tr>
<td>2</td>
<td>Pancreatic cancer</td>
<td>37.8</td>
<td>2</td>
<td>Breast cancer</td>
<td>29.5</td>
</tr>
<tr>
<td>3</td>
<td>Leukemia</td>
<td>18.9</td>
<td>3</td>
<td>Cervical cancer</td>
<td>20.5</td>
</tr>
<tr>
<td>4</td>
<td>Stomach cancer</td>
<td>18.9</td>
<td>4</td>
<td>Colon cancer</td>
<td>18.4</td>
</tr>
<tr>
<td>5</td>
<td>Cervical cancer</td>
<td>9.0</td>
<td>5</td>
<td>Pancreatic cancer</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Source: US Center for Health Statistics, Death Certificates, 2010-2014

Table 6 summarizes the top causes of cancer mortality for both AI/AN and NHW women.
Introduction
Maternal and child health (MCH) is the foundation for healthy children, mothers, and families. Monitoring indicators such as maternal smoking, gestational diabetes, prenatal care, and premature births can help the NUIHC make decisions regarding programs that impact pregnant women, infants and newborns. This section of the community health profile focuses on key indicators for MCH. These data can be used to further examine why these disparities exist and consider programs to eliminate these health disparities.

Total Births
From 2008 to 2012, there were a total of 101,566 births in Lincoln service areas. Among those births, 1.5% were identified as non-Hispanic AI/AN alone (Figure 16). The largest proportions of births among racial/ethnic groups were from NHW (66.5%) and Hispanic (12.7%) women. Non-Hispanic Blacks were 7.8% and non-Hispanic Asians and Pacific Islanders were 3.0% of all births.

Figure 16. Births by Race/Ethnicity, Lincoln Service Area, 2008-2012

*API-Asian/Pacific Islander
MATERNAL AND CHILD HEALTH

Age
In general, AI/AN women tend to give birth at younger ages than their NHW counterparts (Figure 17). 18.4% of births among AI/AN women in Lincoln service areas were to teenage women (less than 19 years of age) compared to 4.8% of NHW births. The proportion of births to teenage women was 3.8 times higher in AI/ANs compared to NHWs. In addition, 61.3% of all births among AI/AN women were to women in their 20s, compared to 53.9% among NHWs. Conversely, NHW women had significantly more children in their 30s compared to AI/AN women. 39.0% of all births among NHW women were to women in their 30s, whereas 18.9% of births were to AI/AN women in their 30s.

Figure 17. Births by Maternal Age Group, Lincoln Service Area, 2008-2012

Marital Status
24.8% of all births to AI/ANs in Lincoln service areas were to women who were married and 75.2% were to women who were not married (Figure 18). This was significantly different compared to NHWs in which nearly 73.6% of births were to married mothers and 26.4% were to unmarried mothers. The proportion of births to unmarried women was 2.8 times higher in AI/ANs compared to their NHW counterparts.

Figure 18. Births by Marital Status, Lincoln Service Area, 2008-2012
MATERNAL AND CHILD HEALTH

Cesarean Section
In Lincoln service areas, approximately one third of births were delivered by cesarean section among NHW females. This was significantly higher than the proportion of deliveries by cesarean section among AI/AN births (25.4%, Figure 19). AI/AN women had 21.8% lower proportion of births by cesarean section compared to NHW women.

Cesarean Section by Maternal Age
The proportion of cesarean deliveries increased significantly as maternal age increased for both AI/AN and NHW women (Figure 20). Pregnant NHW women in their 20s had significantly more births by cesarean section compared to pregnant AI/AN women in the same age range.

Figure 19. Births by Cesarean Section, Lincoln Service Area, 2008-2012

Figure 20. Cesarean Sections by Maternal Age Group, Lincoln Service Area, 2008-2012
Gestational Diabetes
7.8% of AI/AN births in Lincoln service areas were to women who were diagnosed with gestational diabetes during their pregnancy (Figure 21). This proportion was significantly higher than NHW women, where 4.7% of women giving birth were diagnosed with gestational diabetes. The proportion of gestational diabetes in AI/AN women was 1.7 times higher than NHWs.

Gestational Diabetes by Maternal Age
The proportion of gestational diabetes during pregnancy significantly increased with maternal age for both AI/AN and NHW women (Figure 22). There was no difference in gestational diabetes between AI/AN and NHW teenage females; however, pregnant AI/AN women had a significantly higher proportion of gestational diabetes than NHW pregnant women for all other age categories.

Figure 21. Gestational Diabetes, Lincoln Service Area, 2008-2012

Figure 22. Gestational Diabetes by Maternal Age Group, Lincoln Service Area, 2008-2012

Maternal Smoking
In Lincoln service areas, 22.6% of AI/AN women smoked while pregnant, compared to 13.8% NHW women (Figure 23). AI/AN women had 1.6 times higher proportions of smoking while pregnant compared to NHW women.

Smoking by Maternal Age
Maternal smoking decreased as maternal age increased for NHW women; however, for AI/AN women there was a slight increase with maternal age that remained approximately the same as maternal age increased (Figure 24). In addition, maternal smoking was significantly higher among AI/AN women in their 20s & 30s, compared to NHW women. Conversely, NHW teenage women had a significantly higher proportion of maternal smoking than teenage AI/AN women.

Figure 23. Maternal Smoking, Lincoln Service Area, 2008-2012

Figure 24. Maternal Smoking by Age Group, Lincoln Service Area, 2008-2012

Prenatal Care
Prenatal care refers to the medical attention received by women before or during their pregnancy, specifically addressing the mother’s well-being during her pregnancy and caring for the development of her baby. The goal of prenatal care is to detect potential problems early on in the pregnancy and to prevent potential complications. Early prenatal care is a significant component in ensuring a good pregnancy outcome and it is recommended for women to begin prenatal care during the first trimester. Women who receive late or no prenatal care are at risk for having undetected complications during their pregnancy that can result in severe maternal morbidity and mortality, and serious consequences to the unborn infant including low birth weight, premature birth, morbidity and mortality.25

Among pregnant women in the Lincoln service areas, 55.0% of AI/AN women began prenatal care in the first trimester compared to 79.4% of NHW women, a significant difference (Figure 25). The proportion of women beginning prenatal care in their first trimester was 1.4 times higher in NHW women compared to AI/AN women. In addition, 11.8% of pregnant AI/AN women either began prenatal care in the third trimester or did not receive any prenatal care during their pregnancy compared to 4.3% of NHW pregnant women. The proportion of women beginning prenatal care in their third trimester or receiving no prenatal care was 2.7 times higher in AI/AN women compared to NHW women.

Figure 25. Prenatal Care by Trimester, Lincoln Service Area, 2008-2012

Infant Mortality
Infant mortality is a useful indicator for the level of health in a community. It is defined as the number of deaths of infants younger than one year of age per 1,000 live births for a given time-period. Infant mortality is related to the underlying health of the mother, public health practices, socioeconomic conditions, and the availability and use of appropriate health care for infants and pregnant women. Two thirds of infant deaths occur in the first month after birth and are primarily due to health problems of the infant or the pregnancy, such as preterm delivery or birth defects. Infant deaths occurring after the first month are influenced greatly by social or environmental factors, such as exposure to cigarette smoke or problems with access to health care.

The infant mortality for AI/ANs in Lincoln service areas was 3.1 deaths per 1,000 live births (Figure 26). This was similar to the infant mortality rate for NHWs (3.6 per 1,000 live births).
MATERNAL AND CHILD HEALTH

Premature Births
A premature birth is defined as childbirth occurring earlier than 37 completed weeks of pregnancy. In Lincoln service areas, 12.1% of all infants born to NHW women were born prematurely, which is similar to the 11.2% of infants born prematurely to AI/AN women (Figure 27).

Patterns of premature births were similar for both NHW and AI/AN pregnant woman by age stratification (Figure 28); however, the proportion premature births to women over 40 was significantly higher among both AI/AN and NHW mothers. 36.7% of AI/AN and 19.1% of NHW births to women in their 40s were premature.

Figure 27. Premature Births (<37 weeks), Lincoln Service Area, 2008-2012

Figure 28. Premature Births (<37 weeks) by Maternal Age Group, Lincoln Service Area, 2008-2012

Low Birth Weight

Low birth weight is defined as less than 2,500 grams (5.5 pounds). In Lincoln service areas, 6.9% of all infants born to AI/AN women were low birth weight, which is similar to the 7.7% of infants born to NHW women who were low birth weight (Figure 29). Low birth weight patterns by age stratification were similar for both pregnant NHW and AI/AN women in their 20s and 30s (Figure 30). Teenage NHW women had significantly higher proportions of low birth weight infants compared to teenage AI/AN women.

Figure 29. Low Birth Weight (<2,500 g), Lincoln Service Area, 2008-2012

Figure 30. Low Birth Weight (<2,500 g), by Maternal Age Group, Lincoln Service Area, 2008-2012
Neonatal Intensive Care Unit Admission
Most babies admitted to the neonatal intensive care unit (NICU) are premature, have low birth weight, or have a medical condition that requires special care. In the U.S., nearly half a million babies are born preterm, and many of these babies also have low birth weights. Babies with medical conditions such as heart problems, infections, or birth defects are also cared for in the NICU. Admission to the NICU for newborns in Lincoln service areas was similar among AI/AN newborns and NHW newborns (Figure 31). An estimated 8.8% of AI/AN newborns were admitted to the NICU compared to 10.3% NHW newborns.

The number of newborns admitted to the NICU appeared to be relatively consistent across maternal age groups when comparing race; however, newborns of teenage NHW mothers had a significantly higher admission to the NICU than AI/AN women (Figure 32).

Figure 31. Newborns Admitted to the NICU, Lincoln Service Area, 2008-2012

Figure 32. Newborns Admitted to the NICU by Maternal Age group, Lincoln Service Area 2008-2012

REFERENCES

REFERENCES

Glossary of Terms

ACS – American Community Survey
AI/AN – American Indian / Alaska Native
IHS – Indian Health Service
MCH – Maternal and Child Health
NCHS – National Center for Health Statistics
NHW – Non-Hispanic White
NICU – Neonatal Intensive Care Unit
NUIHC – Nebraska Urban Indian Health Coalition
NVSS – National Vital Statistics System
SNAP – Supplemental Nutrition Assistance Program, commonly referred to as Food Stamps
TEC – Tribal Epidemiology Center
UIHI – Urban Indian Health Institute, a division of the Seattle Indian Health Board
UIHP – Urban Indian Health Program
About Us – Our Mission & History
The mission of UIHI is to support the health and well-being of urban Indian communities through information, scientific inquiry, and technology.

The UIHI was established as a Division of the Seattle Indian Health Board, a community health center for urban American Indians and Alaska Natives (AI/ANs). The UIHI is one of 12 tribal epidemiology centers (TECs) funded by the Indian Health Service (IHS). While the other 11 TECs work with tribes regionally, the UIHI focuses on the nationwide urban AI/AN population. As a crucial component of the health care resources for all AI/ANs, tribal epidemiology centers are responsible for:

- Managing public health information systems
- Investigating diseases of concern
- Managing disease prevention and control programs
- Communicating vital health information and resources
- Responding to public health emergencies
- Coordinating these activities with other public health authorities

Contact Information
For general questions, please contact: info@uihi.org

UIHI distributes a Weekly Resource Email – if you would like to be included in our subscription to receive updates, you can email the address above.

Urban Indian Health Institute
Seattle Indian Health Board
611 12th Avenue South
Seattle, WA 98144
Phone: (206) 812 – 3030
Fax: (206) 812 – 3044
Contact Us
Please contact the Urban Indian Health Institute with your comments by emailing info@uihi.org, calling (206) 812-3030 or visiting us online at www.uihi.org.